• Reduce text

    Reduce text
  • Restore text size

    Restore text size
  • Increase the text

    Increase the text
  • Print

    Print
Rangées de graines.. © INRA, Elena Schweitzer © Fotolia

Our results

Contents
  1. Introduction
  2. Research and Innovation 2018 - For Food and Biobased Products
  3. Dry-cured ham: a process simulator can now define routes of manufacture that yield lower-salt products
  4. The way in which proteins aggregate when heated may change their sensitising potency
  5. Enhancing the viability of spray-dried probiotic bacteria by stimulating their stress tolerance
  6. Human milk digestion in the preterm infant: impact of technological treatments
  7. Research & Innovation 2017 - For Food and Biobased Products
  8. To stick or not to stick? Pulling pili sheds new light on biofilm formation
  9. When biopolymers selfassemble: a balance between energy and entropy.
  10. Mimicking the gastrointestinal digestion in a lab-on-a-chip:the microdigester
  11. How a milk droplet becomes a powder grain
  12. Research & Innovation 2016 - For Food and Bioproducts
  13. A new process for the biorefining of plants
  14. Under the UV light : the bacterial membrane
  15. Reverse engineering or how to rebuild ... bread!
  16. Green Chemistry: a step towards lipid production in yeast
  17. Individually designed neo-enzymes for antibacterial vaccines
  18. Multi-scale mechanical modelling: from the nanometric scale to the macroscopic properties of bread crumb
  19. Minimill: 500 g to assess the milling value of soft wheats
  20. Microbial production of lipids for energy or chemical purposes
  21. The discrete role of ferulic acid in the assembly of lignified cell wall
  22. Eco-design of composites made from wood co-products
  23. Analysis of volatile compounds enables the authentication of a poultry production system
  24. Nanoparticles as capping agents for biopolymers microscopy
  25. Pasteurisation, UHT, microfiltration...All the processes don't affect the nutritional quality of milk in the same way
  26. Integration of expert knowledge applied to cheese ripening
  27. Controlling cheese mass loss during ripening
  28. The shape memory of starch
  29. Research & Innovation 2015 - For Food & Biobased Products
  30. Behaviour of casein micelles during milk filtering operations
  31. Overaccumulation of lipids by the yeast S. cerevisiae for the production of biokerosine
  32. Sequential ventilation in cheese ripening rooms: 50% electrical energy savings
  33. An innovative process to extract bioactive compounds from wheat
  34. Diffusion weighted MRI: a generic tool for the microimaging of lipids in food matrices
  35. Characterization of a major gene of anthocyanin biosynthesis in grape berry
  36. New enzyme activity detectors made from semi-reflective biopolymer nanolayers
  37. Improving our knowledge about the structure of the casein micelle
  38. Heating milk seems to favour the development of allergy in infants
  39. Fun with Shape
  40. Using volatile metabolites in meat products to detect livestock contamination by environmental micropollutants
  41. SensinMouth, when taste makes sense
  42. A decision support system for the fresh fruit and vegetable chain based on a knowledge engineering approach
  43. SOLEIL casts light on the 3D structure of proteins responsible for the stabilisation of storage lipids in oilseed plants
  44. A close-up view of the multi-scale protein assembly process
  45. Controlling the drying of infant dairy products by taking water-constituent interactions into account
  46. Polysccharide nanocrystals to stabilise pickering emulsions
  47. Discovery of new degradative enzymes of plant polysaccharides in the human intestinal microbiome
  48. A durum wheat flour adapted for the production of traditional baguettes
  49. Virtual modelling to guide the construction of « tailored-made » enzymes
  50. How far can we reduce the salt content of cooked meat products?
  51. Diffusion of organic substances in polymer materials: beyond existing scaling laws
  52. Smart Foams : various ways to destroy foams on demand !
  53. Dates, rich in tannins and yet neither bitter nor astringent
  54. Sodium content reduction in food
  55. Research & Innovation 2014

Mimicking the gastrointestinal digestion in a lab-on-a-chip:the microdigester

By combining food and miniaturization knowledge, INRA researchers in UR BIA (Nantes, France) designed a lab-on-a-chip dedicated to gastrointestinal digestion studies at the micrometer scale. This device has already been used to monitor the digestion of lipid droplets in the presence of proteins. A real-time microscopy analysis provided similar results compared to those obtained in a test tube, but was much faster since it did not require further titrations on samples. This system opens up new prospects for studying the digestion of micronutrients.

Updated on 02/24/2016
Published on 02/24/2016
Keywords:

At the junction of chemistry, physics and biology, digestion involves many processes. Studying the mechanisms in such a complex system is challenging because numerous interactions coexist. Even in an apparently simple system such as an emulsion, many physicochemical characteristics affect lipid digestion. Moreover, these characteristics are difficult to control using conventional in vitro techniques. The goal of this work was to design a microfluidic device allowing the study of well-controlled individual oil droplets under gastrointestinal digestion conditions. Different parameters were investigated in order to validate the relevance of this device compared to conventional in vitro techniques using emulsions. Various triglycerides and digestion conditions were tested with droplets of the same initial diameter generated by a flow focusing device, then placed in individual traps of a microfluidic chamber for digestion with continuous digestive juice renewal. The results are in good agreement with those obtained with conventional in vitro techniques and open the way to screening of lipid digestion, in particular, bioaccessibility of lipophilic molecules, a prerequisite for  bioavailability studied in nutrition, pharmacology, and toxicology.

Digestion intestinale d’une goutte d’huile d’olive au cours du temps. © UR BIA, BIA
Digestion intestinale d’une goutte d’huile d’olive au cours du temps © UR BIA, BIA

Contact(s)
Scientific contact(s):

Find out more

S. Marze, H. Algaba, M. Marquis, 2014, A microfluidic device to study the digestion of trapped lipid droplets, Food and Function 5, 1481-1488.

On the subject of

Teams

Contacts:sebastien.marze@nantes.inra.fr & melanie.marquis@nantes.inra.fr

UR BIA:By focusing its research on the determinism of the quality of products of agriculture, food or not, and on the valuation of raw materials or by-products, the BIA unit component CEPIA department (and Characterization Development of Derived Products of Agriculture), aims to provide elements of response to major societal challenges (food transitions, green chemistry, sustainable food systems, ...), focusing particularly on three issues:
- control the quality of crop plants to meet various uses (food or otherwise) in the context of sustainable agriculture and climate change
- the development of functional foods and bio-based materials from the perspective of eco-design
- improving the "health" food value taking into account the optimization of the risk-benefit balance.